Synthesis and Crystal Structures of Two 9-(2-Bromoethyl)-Substituted 7-Deazapurines

by Simona Asaftei^{*a}), Martin Reichelt^b), Hans Reuter^b), and Helmut Rosemeyer^{*a})

^a) Organic Materials Chemistry/Bioorganic Chemistry, Institute of Chemistry, University of Osnabrück, Barbarastr. 7, D-49069 Osnabrück

^b) Inorganic Chemistry/Structure Chemistry, Institute of Chemistry, University of Osnabrück, Barbarastr. 7, D-49069 Osnabrück

The 7-(2-bromoethyl) derivatives, **2a** and **2b**, of 4-chloro-7*H*-pyrrolo[2,3-*d*]pyrimidine (**1a**) and 4chloro-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-amine (**1b**) were synthesized by nucleobase anion alkylation (NaH, DMF) and crystallized. X-Ray analyses of both compounds were performed, and they revealed significantly different positioning of the side chain relative to the heterocyclic ring, depending on the substituent (H or NH₂) at C(2).

Introduction. – 7-Deazapurines (= pyrrolo[2,3-*d*]pyrimidines¹)) are of considerable importance, because a series of nucleoside antibiotics comprising tubercidin, toyocamycin, and sangivamycin contains the 7-deazaadenine moiety, while other naturally occurring nucleosides such as queuosine, cadeguomycin, and archaeosine contain a 7-deazaguanine ring [1][2]. 7-Deazapurines of the xanthine type have been prepared as analogues of potent A1- and A2-adenosine receptor antagonists [3]. Functionalized derivatives of 7-deazapurines are of interest, because they can be easily coupled to polymers, dendrimers, lipids, or solid surfaces carrying amino functions, which lend them the functionality of a particular modified nucleobase [4–6]. The coupling of the newly prepared compounds to redox-active dendrimers and their use as electrochromic materials will be published separately.

Results and Discussion. – *Synthesis.* Versatile precursors of 7-deazaadenine and guanine such as compounds **1a** and **1b** are meanwhile available from various providers. Here, these compounds were prepared according to [7] (for **1a**) and [8][9] (for **1b**). Subsequent nucleobase anion alkylation (NaH, DMF) [10] with a 100-fold excess of 1,2-dibromoethane gave the corresponding compounds **2a** and **2b**, respectively, besides small amounts (10-15%) of the corresponding 9-vinyl derivatives **3a** and **3b** which were separated by column chromatography. The latter compounds are also of interest as they can be polymerized to 'polyvinyl(7-deazapurines'; 'plastic nucleic acids') [11]. The structure and integrity of the novel compounds **2a** and **2b** were confirmed by ¹H-and ¹³C-NMR, as well as by UV spectroscopy and by elemental analyses. The assignment of the NMR resonances was established by gradient-selected homo- and

¹) The atom numbering of the pyrrolo[2,3-*d*]pyrimidine system follows the *IUPAC* rules and is different from the numbering of the purine ring system.

^{© 2009} Verlag Helvetica Chimica Acta AG, Zürich

heteronuclear correlation spectroscopy (*Bruker* pulse programs, ¹H,¹³C: HSQCETGP; ¹H,¹H: COSYGPSW). The NMR data exhibit some slight differences between compounds **2a** and **2b**, particularly with respect to the side-chain resonances. Compared to **2a**, the chemical shift $\delta(H)$ of H-C(8) of **2b** is biased to lower field by 0.3 ppm, and the ³J(H,H) coupling constants to the corresponding H-C(9) differ by 0.4 Hz. This might be either due to the different group electronegativity values of the different heterocycles, and/or due to their different anisotropic field effects. It is also possible that, in compound **2b**, the side chain is turned into a position which allows the formation of a H-bond between the Br-substituent and one of the amino H-atoms (*Fig. 1*). Such a topological situation is unlikely in case of **2a** because of the missing Hbridge.

Fig. 1. Left: 3D-Optimized structure of compound 2a using ChemSketch, 3D viewer, version 11.0 (Advanced Chemistry Developments Inc., Toronto). Right: 3D Structure of compound 2b in which the side chain is rotated into a position with a minimized distance of NH₂-Br (2.78 Å).

Crystallography. In Tables 1-4, the crystallographic data as well as torsion angles, intramolecular bond distances, and bond angles of compounds **2a** and **2b** are collected. Fig. 2 displays the ball-and-stick models and the crystal cell of **2a**, while Fig. 3 shows those for compound **2b**. The data clearly confirm that, for both compounds, the positioning of the side chain relative to the heterocycle is different: while, for **2a**, it is stretched out, it is bent in case of **2b**. The latter allows the formation of a H-bond

	2a	2b
Empirical formula	C ₈ H ₇ BrClN ₃	C ₈ H ₈ BrClN ₄
Formula weight [g mol ⁻¹]	260.53	275.54
Temp. [K]	100(2)	100(2)
Wavelength [Å]	0.71073	0.71073
Crystal system	orthorhombic	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$	Pbca
a [Å]	6.7567(4)	18.2725(7)
<i>b</i> [Å]	7.1358(4)	5.2455(3)
<i>c</i> [Å]	19.2952(8)	20.5077(9)
<i>V</i> [Å ³]	930.31(9)	1965.63(16)
Ζ	4	8
D_x [g cm ⁻³]	1.860	1.862
$\mu(MoK_a) [mm^{-1}]$	4.658	4.417
F(000)	512	1088
Crystal size [mm]	$0.47 \times 0.17 \times 0.10$	$0.33 \times 0.31 \times 0.25$
Crystal description	prism	plate
θ Range for data collection [°]	2.11 - 28.00	1.99 - 28.00
Limiting indices	$-8 \le h \le 7$	$-23 \le h \le 24$
	$-8 \leq k \leq 9$	$-6 \leq k \leq 6$
	$-25 \le l \le 25$	$-26 \leq l \leq 26$
Reflection collected/unique	36596/2239	41259/2362
R _{int}	0.0255	0.0361
Completeness to $\theta = 28.00 [\%]$	100.0	99.7
Transmission factors [min; max]	0.2182; 0.6531	0.2713; 0.3310
Data/restraints/parameters	2239/0/121	2362/0/129
Goodness-of-fit on F^2	1.109	1.082
Final R indices $(I > 2\sigma(I))$	$R_1 = 0.0143, wR_2 = 0.0322$	$R_1 = 0.0302, wR_2 = 0.0625$
Final <i>R</i> indices (all data)	$R_1 = 0.0156, wR_2 = 0.0327$	$R_1 = 0.0380, wR_2 = 0.0663$
Largest diff. peak and hole [e Å ^{-3}]	0.282 and -0.195	0.496 and -0.605

Table 1. Crystallographic Data of Compounds 2a and 2b

Table 2. Intramolecular Bond Distances in Molecules 2a and 2b

Bond [Å]	2a	2b
N(1)-C(2)	1.335(2)	1.345(3)
N(1) - C(7a)	1.339(2)	1.341(3)
C(2) - N(2)	-	1.348(3)
C(2) - N(3)	1.352(2)	1.366(3)
N(3) - C(4)	1.322(2)	1.316(3)
C(4) - C(4a)	1.386(2)	1.374(3)
C(4) - Cl(4)	1.742(2)	1.746(2)
C(4a) - C(7a)	1.417(2)	1.416(3)
C(4a) - C(5)	1.430(2)	1.435(3)
C(5) - C(6)	1.362(2)	1.359(3)
C(6) - N(7)	1.388(2)	1.399(3)
N(7) - C(7a)	1.370(2)	1.367(3)
N(7) - C(8)	1.465(2)	1.446(3)
C(8) - C(9)	1.519(2)	1.512(3)
C(9)-Br(1)	1.954(2)	1.954(2)

Bond angle [°]	2a	2b
C(2) - N(1) - C(7a)	112.8(1)	112.8(2)
N(1)-C(2)-N(3)	127.9(1)	126.6(2)
C(4) - N(3) - C(2)	116.4(1)	116.8(2)
N(3)-C(4)-C(4a)	123.5(2)	124.1(2)
N(3)-C(4)-Cl(4)	116.5(1)	116.0(2)
C(4a) - C(4) - Cl(4)	120.0(1)	120.0(2)
C(4) - C(4a) - C(7a)	113.5(1)	113.4(2)
C(4) - C(4a) - C(5)	139.0(2)	139.2(2)
C(7a) - C(4a) - C(5)	107.5(1)	107.4(2)
C(6) - C(5) - C(4a)	105.6(1)	106.3(2)
C(5) - C(6) - N(7)	111.4(1)	110.4(2)
C(7a) - N(7) - C(6)	107.4(1)	108.1(2)
C(7a) - N(7) - C(8)	126.8(1)	126.0(2)
C(6) - N(7) - C(8)	125.5(1)	125.7(2)
N(1)-C(7a)-N(7)	126.0(1)	125.8(2)
N(1)-C(7a)-C(4a)	125.9(1)	126.3(2)
N(7) - C(7a) - C(4a)	108.1(1)	107.9(2)
N(7) - C(8) - C(9)	111.0(1)	113.2(2)
C(8) - C(9) - Br(1)	108.2(1)	111.5(2)

Table 3. Intramolecular Bond Angles in Molecules 2a and 2b

Table 4. Torsion Angles for Molecules 2a and 2b

Torsion angle [°]	2a	2b
C(7a) - N(7) - C(8) - C(9)	- 59.4(2)	- 126.5(2)
C(6)-N(7)-C(8)-C(9)	128.6(2)	59.6(3)
N(7) - C(8) - C(9) - Br(1)	-175.7(1)	60.9(2)

between the Br-substituent to an amino H-atom of a neighboring **2b** molecule (*Fig. 3*), whereas the molecules of **2a** are held together only by *Van der Waals* forces (*Fig. 2*).

Experimental Part

General. All chemicals were purchased from Sigma-Aldrich (Deisenhofen, Germany) or from TCI-Europe (Zwijndrecht, Belgium). Solvents were of laboratory grade. TLC: aluminium sheets, silica gel 60 F_{254} , 0.2 mm layer (Merck, Germany). M.p. Büchi SMP-20, uncorrected. UV Spectra: Cary 1E spectrophotometer (Varian, D-Darmstadt); λ_{max} in nm (ε in M^{-1} cm⁻¹). NMR Spectra: Bruker AMX-500 spectrometer;¹H: 500.14 MHz, ¹³C: 125.1; chemical shifts δ are given in ppm rel. to Me₄Si as internal standard for ¹H and ¹³C.

7-(2-Bromoethyl)-4-chloro-7H-pyrrolo[2,3-d]pyrimidine (2a). 4-Chloro-7H-pyrrolo[2,3-d]pyrimidine (1a; 2 g, 13 mmol) and 4 g of NaH were suspended in 20 ml of freshly dist. DMF, and 1,2-dibromoethane (242 g, 1,3 mol) was added in 10 ml of DMF. The suspension was stirred at 70° for 3 d under reflux. The mixture was filtered, and the mother liquor was evaporated. The crude product was dissolved in CHCl₃ and purified by column chromatography (CC; silica gel, 35×3.5 cm, petroleum ether(PE)/AcOEt 4:1). The first fraction contained 4-chloro-7-ethenyl-7H-pyrrolo[2,3-d]pyrimidine (3a). $R_{\rm f}$ (PE/AcOEt 4:1) 0.67. ¹H-NMR ((D₆)DMSO): 8.66 (*s*, H–C(2)); 8.22 (*d*, ³*J*(6,5)=3.8, H–C(6)); 7.54 (*dd*, ³*J*(_z)(8,9)=8.9, ³*J*(_z)(9,8)=15.9, H–C(8)); 6.76 (*d*, ³*J*(5,6)=3.8, H–C(5)); 5.84 (*d*, ³*J*(_z)(9,8)=15.9, H–C(9)).

Fig. 2. Ball-and-stick model of **2a** with the atomic numbering scheme used. With the exception of the Hatoms, which were represented by use of spheres with a common isotropic radius, all other atoms were represented as thermal displacement ellipsoids (one octant: Br-atom = grey, Cl-atom = white; cross: Natom = grey, C-atom = white) showing 50% of the probability of the corresponding atom.

The second fraction contained the title compound **2a**. The product-containing fractions were pooled, and the solvent was evaporated. After drying *in vacuo* (r.t., 24 h) 2.15 g (8.2 mmol, 63%) of **2a** were obtained. Light yellow powder. M.p. 86°. R_f (PE/AcOEt 4:1) 0.42. UV (CHCl₃): 239 (18800), 277 (38800). ¹H-NMR ((D₆)DMSO): 8.58 (*s*, H–C(2)); 7.34 (*d*, ³*J*(6,5) = 3.6, H–C(6)); 6.55 (*d*, ³*J*(5,6) = 3.6, H–C(5)); 4.70 (*t*, ³*J*(8,9) = 5.8, CH₂(8)); 3.76 (*t*, ³*J*(9,8) = 5.8, CH₂(9)). ¹³C-NMR ((D₆)DMSO): 150.09 (C(2)); 149.68 (C(7a)); 144.16 (C(4)); 129.74 (C(6)); 121.11 (C(4a)); 100.82 (C(5)); 46.97 (C(8)); 30.00 (C(9)). Anal. calc. for C₈H₇BrClN₃ (260.518): C 36.88, H 2.71, N 16.13; found: C 36.60, H 3.10, N 16.09.

Suitable crystals for X-ray analysis were obtained by slow evaporation of a CHCl₃ soln. of **2a**. 7-(*Bromomethyl*)-4-chloro-7H-pyrrolo[2,3-d]pyrimidin-2-amine (**2b**). 4-Chloro-7H-pyrrolo[2,3-d]pyrimidin-2-amine (**1b**; 2.2 g, 13 mmol) and 4 g of NaH were suspended in 20 ml of freshly dist. DMF, and 1,2-dibromoethane (242 g, 1.3 mol) was added in 10 ml of DMF. The suspension was stirred at 70° for 3 d under reflux. The mixture was filtered, and the mother liquor was evaporated. The crude product was dissolved in CHCl₃ and purified by CC (silica gel, 35×3.5 cm, PE/AcOEt 4:1). The first fraction contained 4-chloro-7-ethenyl-7H-pyrrolo[2,3-d]pyrimidin-2-amine (**3b**). $R_{\rm f}$ (PE/AcOEt 4:1) 0.6. ¹H-NMR (D₆)DMSO): 7.66 (d, ${}^{3}J(6,5) = 3.3$, H-C(6)); 7.33 (dd, ${}^{3}J_{(Z)}(8,9) = 9.4$, ${}^{3}J_{(E)}(8,9) = 15.6$,

Fig. 3. *Ball-and-stick model of* **2b** *with the atomic numbering scheme used.* With the exception of the Hatoms, which were represented by use of spheres with a common isotropic radius, all other atoms were represented as thermal displacement ellipsoids (one octant: Br-atom = grey, Cl-atom = white; cross: Natom = grey, C-atom = white) showing 50% of the probability of the corresponding atom.

1949

H-C(8)); 6.92 (s, NH₂); 6.53 (d, ${}^{3}J(5,6) = 3.3$, H-C(5)); 5.64 (d, ${}^{3}J_{(E)}(9,8) = 16.1$, H-C(9)); 4.93 (d, ${}^{3}J_{(Z)}(9,8) = 9.2$, H-C(9)).

The second fraction containing the title compound **2b** was collected, and the solvent was evaporated. After drying *in vacuo* (r.t., 24 h), 1.84 g (6.6 mmol, 51%) of **2b** were obtained. Yellowish powder. M.p. 121°. R_f (PE/AcOEt 4 :1) 0.42. UV (CHCl₃): 243 (14500), 312 (5500). ¹H-NMR ((D₆)DMSO): 7.22 (d, ³*J*(6,5) = 3.6, H-C(6)); 6.71 (*s*, NH₂); 6.30 (d, ³*J*(5,6) = 5.0, H-C(5)); 4.41 (t, ³*J*(8,9) = 6.2, CH₂(8)); 3.83 (t, ³*J*(9,8) = 6.2, CH₂(9)). ¹³C-NMR ((D₆)DMSO): 159.33 (C(2)); 153.54 (C(7a)); 151.21 (C(4)); 126.35 (C(6)); 108.63 (C(4a)); 98.55 (C(5)); 45.35 (C(8)); 31.30 (C(9)). Anal. calc. for C₈H₈BrClN₄ (275.533): C 34.87, H 2.93, N 20.33; found: C 35.10, H 3.17, N 20.55.

Suitable crystals for X-ray analysis were obtained by slow evaporation of a CHCl₃ soln. of **2b**. X-Ray Crystallography. Suitable single crystals of 2a and 2b were selected under a polarization microscope and mounted on a 50-µm MicroMesh MiTeGen MicromountTM using FROMBLIN Y perfluoropolyether (LVAC 16/6, Aldrich). The crystallographic data for compounds 2a and 2b are given in Table 1. All measurements were conducted at 100 K on a Bruker Kappa APEXII single-crystal diffractometer with CCD area detector using graphite-monochromated MoK_a radiation ($\lambda 0.71073$ Å) and KRYO-FLEX Low-Temperature equipment. Unit cell dimensions were determined using the APEX 2 software suite [12]. The centrosymmetric space group Pbca (No. 61) of 2b was determined unambiguously from the systematic absences 0kl with h odd, h0l with l odd, and hk0 with h odd, as was the chiral space group $P2_12_12_1$ (No. 19) of **2a** from the systematic absences h00 with h odd, 0k0 with k odd, and 00l with l odd. In the presence of atoms heavier than Si (Br and Cl), the value of the absolute structure parameter of x = 0.5095 [13], however, indicates racemic twinning of **2a** that was taken into account applying twin refinement. Data reduction was performed with SAINT [14]. The intensities were corrected for Lorentz and polarization effects. For both compounds, an empirical absorption correction was applied using SADABS [15], which is based on an analysis of symmetry-equivalent reflections in the highly redundant data set. Each structure was solved by direct methods using SHELXS [16], which revealed most of the non-H-atoms of the molecules. All remaining non-H-atoms were located in subsequent difference Fourier maps.

The non-H-atoms in each structure were refined anisotropically. All H-atoms including those of the NH_2 group were found in difference *Fourier* maps. To reduce the number of refined parameters, they were placed in geometrically calculated positions and constrained to ride on their parent atoms. Two common isotropic displacement parameters for the H-atoms of the heterocycle and the side chain were refined.

The refinement of each structure was carried out on F^2 using full-matrix least-squares procedures, which minimized the function $\Sigma w (F_o^2 - F_c^2)^2$. All calculations were performed using SHELXL 97 [16]. The *Figs.* 1-3 were drawn using Diamond [17].

REFERENCES

- R. J. Suhadolnik, 'Nucleosides as Biological Probes', John Wiley & Sons, New York, 1979, pp. 158– 166.
- [2] F. Seela, X. Peng, S. Budow, Curr. Org. Chem. 2007, 11, 427.
- [3] C. E. Müller, U. Geis, B. Grahner, W. Lanzner, K. Eger, J. Med. Chem. 1996, 39, 2482.
- [4] H. Rosemeyer, F. Seela, Makromol. Chem. 1984, 185, 687.
- [5] H. Rosemeyer, M. Ahlers, B. Schmidt, F. Seela, Angew. Chem., Int. Ed. 1985, 24, 501.
- [6] H. Rosemeyer, Molbank 2009, M590, and refs. cit. therein.
- [7] J. Davoll, J. Chem. Soc. 1960, 131.
- [8] U. Lüpke, Ph.D. Thesis, Universität-GH Paderborn, Germany, 1979.
- [9] F. Seela, H. Steker, H. Driller, U. Bindig, Liebigs Ann. Chem. 1987, 15.
- [10] F. Seela, N. Ramzaeva, H. Rosemeyer, 'Purines', in 'Science of Synthesis, Vol. 16.17', Thieme Verlag, Stuttgart, 2003, pp. 945–1108.
- [11] J. Pitha, M. Akashi, M. Draminski, in 'Biomedical Polymers; Polymeric Materials and Pharmaceuticals for Biomedical Use', Eds. E. P. Goldberg, A. Nakajima, Academic Press, New York, London, Toronto, Sydney, San Francisco, 1980, pp. 271–297.

1950

Helvetica Chimica Acta - Vol. 92 (2009)

- [12] APEX 2 Suite of Crystallographic Software, Version 2008.5, Bruker AXS Inc., Madison.
- [13] H. D. Flack, Acta Crystallogr., Sect. A 1983, 39, 876.
- [14] SAINT, Version 7.56a, Bruker AXS Inc., Madison.
- [15] SADABS, Version 2008.1, Bruker AXS Inc., Madison.
- [16] G. M. Sheldrick, *Acta Crystallogr.*, *Sect. A* 2008, *64*, 112.
 [17] K. Brandenburg, DIAMOND Visual Crystal Structure Information System, Version 2.1 c, Crystal Impact GbR, Bonn, Germany, 1999.

Received April 27, 2009